Technical Data

Aircraft Vehicle	
Materials	Full composites
Wingspan	165in (4.2m)
Length	59in (1.5m)
Maximum Take off Mass	55lbs (25kg)
Engine Type	Gasoline Engine
Endurance	10h / 540NM (1000km)
Cruise Speed	38kt to 70kt (70 to 130km/h)
Maximum speed	100kt (180km/h)
Maximum Altitude	15.000ft (4.500m)
Climbing Rate	100ft/mn (300m/mn)
Launch	Bungee catapult
Recovery	All Terrain, short range belly landing

Payload Bay	
Volume	35x8x9 in3 (90x21x23 cm3)
Maximum Payload Mass	11lbs (5kg)
Electric Power Supply	100W, 12V regulated
Openings	Automated Sideopening Hatches*
Fastening	Fastening Rails*

*Customization on demand

Operational Conditions		
Transport	Entire system contains in a trailer for light vehicules	
Preparation Time	Less than 20min	
Temperature Range	-4°F to 122°F (-20°C to +50°C)	
Max Wind Speed for Takeoff	32kt (60km/h)	
System		
General	Full automatic mission flight, cartographic monitoring	
Ground Control Station	Customized from QGControl Software, additionnal safety module	
Landing, Takeoff	Automatic takeoff, RTK aided landing, possibility of full manual control	

The BOREAL UAV System is designed, developped and built by SAS BOREAL, using aeronautical technologies. In addition, SAS BOREAL is able to adapt and customize the product to meet user needs, particularly for scientific applications or collecting measurements (contact us for more details).

www.boreal-uas.com

STRAN

31320 CASTANET TOLOSAN - FRANCE contact@boreal-uas.com

UAV System

Precision, heavy payload capacity, long endurance

Features

- Large payload area, easy fastening
- 5Kg payload, 100 W electric power supply available
- Stable and precise flight
- Long endurance long range (10 h / 1000 km)
- All terrain operations thanks to a catapult on a light trailer, and short low speed belly landing
- Large belly hatches
- DGAC (French ANSP) Certified
- Cartographic monitoring, waypoint mission programming

GCS for control and monitoring

Specific Payload Test

Use Cases Examples

High Resolution Imagery

Trajectory precision, stability and large payload capacity are the key features for high quality photography.

Yellowscan LIDAR scanning | http://yellowscan.lavionjaune.com

Meteorology

The payload and altitude performances of the UAV permit scientific measurements like temperature, humidity, turbulence, radiometry, and aerosols.

System | experimentation

Thanks to its carrying capacity, the aircraft is involved in many scientific and/or R&D projects using high on board computing power, like GNSS reflectometry (e.g. H2020 Mistrale project) or real time image processing.

Precision, heavy payload capacity, long endurance

UAV System

Very high resolution and large scale cartographic surveys over French Polynesian Atolls (CEA, L'Avion Jaune) | www.lavionjaune.fr

LIDAR

Stability and payload capacity allow efficient LIDAR scanning above large areas (infrastructures, environnment).

In Gers, France (2012), an atmospheric campain with several flights up to 3000m, accross the cloud cover (CNRS / Météo France, L'Avion Jaune) <u>www.cnrm.meteo.fr</u>